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1

Introduction

Meteorologists have set themselves the goal to understand the processes in the atmosphere.
Besides organisations, individual people and nations rely on model weather forecasts for
all kind of tasks. Temperature is among of the forecasted variables. There are several
model types that predict a possible model weather forecast. Raw model weather forecasts
are one of them. They are computations of one particular model run. These raw model
forecasts can contain large systematic errors. Next to imperfect initial conditions and
different model parametrisations there is the error due to representativeness. This error
is a result of the fact that the temperature is calculated for an area of a grid cell and not
for the specific location of the weather station [19].

This thesis focuses on a global verification of the 2-m above ground temperature fore-
cast of five raw numerical weather forecast models and one reanalysis model over the year
2018 using 19150 stations to represent the world maps and nearly 9000 weather stations
for statistical analyses.

It is the objective to give an overview on how the different model errors change under spe-
cific conditions. Besides defining regions with possible higher and lower variability, their
different biases were also examined. This allows a better understanding of the forecast
accuracy in different parts of the world.

In the last few years, current model data have become accessible for the general pub-
lic. However, archived meteorological data are still not publicly accessible. Thus, the
model data was downloaded and stored by meteoblue (meteoblue AG). All model data
used in this study are 24-h forecasts. The data of all six global models were only available
for the last few years. This is a reason why so few comparisons of these six global forecast
models have been done in the past. A standardised comparison on global atmospheric
forecast models is still missing.

In this thesis a dependency of the geographical latitude and longitude and the height
of the station is considered. Furthermore, besides the horizontal and vertical distances
between the station coordinates and the model grid point, an analysis on the climate
regions and two different model spreads will be taken into account.


https://www.meteoblue.com
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Theory

2.1 Development of Numerical Simulations

One of the most important achievements of the last century was the ability to simulate
complex physical systems using numerical models. As a result, it is now possible to pre-
dict the weather and gain knowledge of the factors that control weather patterns [10].

100 years ago, forecasts were imprecise and unreliable. Observations were scarce and
irregular and physical laws were neglected. In 1901, the American meteorologist Cleve-
land Abbe first proposed a mathematical approach to weather forecasting. Shortly after,
the Norwegian scientist Vilhelm Bjerknes proposed a two-step plan: After determining
the state of the atmosphere, a forecast could be done on the basis of different laws of
motion. The English scientist Lewis Fry Richardson first started studying old weather
charts. He started making predictions by observing weather situations of the past and
their developments. He advanced algorithms on the basis of Bjerknes work that are no-
tably similar to the algorithms used now. With these computations and mathematical
systems, Bjerknes and Richardson laid the foundations for modern forecasting - however,
this pre-computer era lacked the necessary computation power [10].

With a better understanding of atmospheric dynamics, advances in numerical analysis,
the three dimensional knowledge about the state of the atmosphere with radiosondes, and
the development of the digital computer, the scientific community increased its capability
to make better weather forecasts [10].

As well as global models that cover the whole planet, there are regional weather fore-
cast models only covering specific regions. Nowadays, a combination of global and local
models is common. In 1979 the European Centre for medium-range weather forecasts
(ECMWF) started their work with the first operational forecast. In the early 1990s the
ECMWF began with ensemble forecasting. Multiple model runs with slightly different
initial states deliver differing final conditions. As a result, combined outputs can be used
to estimate future atmospheric states. Several outputs close to each other suggest a higher
probability and vice versa [10].

Today, the world is clustered into model domains (fields) with a specific side length called
spatial or horizontal resolution. These model domains are mostly arranged in rectangles
(ICON icosahedral) and are evenly spaced between each other. Besides the surface, the



model domain typically divides the atmosphere vertically into 55 levels of about 14 km
[18]. In the last few years, several probabilistic methods based on ensemble forecasting,
bias removal and multi-model approaches have been developed. There are increasing
numbers of available regional high-resolution weather forecasts, like NEMS (NOAA En-
vironmental Modeling System) and NMM (Nonhydrostatic Meso-Scale Modelling) [18].
They are enhanced with new developments of model physics and parametrisations or post-
processing methods. This ensured that the resolution has evolved over about two orders
of magnitude in the last decades [20].

2.2 Model Types

There are different types of model data.

Raw data: The raw model output data are the computations of one particular model.
The data are the output of one model run with a specific parametrisation and have no
post-processing step (’stand-alone’) [15].

MOS: The model output statistics (MOS) combines the raw model output and the obser-
vations to form a statistical relationship. The raw model output is post-processed using
statistics from local historical weather measurements, thereby improving the forecast ac-
curacy [13]. MOS is able to remove systematic forecast errors. In addition to the relation
to the season and the forecast hour of the day, MOS usually uses measurements from the
day before to compute a forecast [11, 19]. Each station has different MOS equations, but
they are derived with the exact same algorithm [20)].

Reanalysis: A reanalysis model takes into account a historical climate analysis, mea-
surements, observations and simulations for its model correction [12].

mLM: The meteoblue learning multimodel (mLM) is a multi-model approach which uses
actual weather measurements to post-process the numerical forecast output. To forecast,
it first compares actual measurements with the different model forecasts to increase the
accuracy by making increasing use of artificial intelligence. While MOS is working with
one model, mLM includes the comparison of different weather forecast models including
ERA5 and as well MOS [16, 17].

With better knowledge of atmospheric initial conditions, better parametrisation of the
model computations, and more powerful computer performance - which enables higher
resolution — the forecast can be improved [15, 22].



2.3 Models

For the survey six global models were chosen of which four are global forecasting systems
of national weather services. Five models are raw model forecasts without removed bias
and one reanalysis model. The models have run over the year 2018, computing hourly
24-h forecasts in their specific spatial resolution.

e ERA5:
Developer: ECMWF (European Centre for Medium-Range Weather Forecasts)
Spatial resolution: 30 km
ERAS is the reanalysis model of the ECMWEF [7].

¢ NEMSGLOBAL (NEMS):
Developer: meteoblue
Spatial resolution: 30 km
NEMSGLOBAL is global model of the NEMS multi-scale models of meteoblue [14].

o GFS05:
Developer: NOAA and NCEP (National Centers for Environmental Prediction)
Spatial resolution: 40 km
GFS05 is the global forecasting system of the United States [21].

¢ MFGLOBAL (MF):
Developer: Méteo-France
Spatial resolution: 40 km
MFGLOBAL is the global forecasting system of France [5].

e GEM:
Developer: Canadian Meteorological Centre (CMC)
Spatial resolution: 25 km
GEM is the global forecasting system of Canada [4].

e ICON:
Developer: DWD
Spatial resolution: 13 km
ICON is the global forecasting system of Germany [6].

For further information about a model follow the corresponding link in the bibliography.



3
Methods

3.1 Data Review

The data-set was provided by meteoblue and contained hourly temperature measurements
from 23460 weather stations world-wide. The measurements were mainly received from
the WMO (World Meteorological Organisation) and GDAS (Global Data Assimilation
System from NOAA [National Oceanic and Atmospheric Administration]).

The measurement data-set was cleaned up. On all stations the data coverage was calcu-
lated. The coverage was calculated as the percentage of the useable data (temperatures
between -100 and 70 °C) per year in relation to the maximum possible data quantity of
8760 hourly measurements per year in 2018.

Besides unrealistic temperature values the data-set contained stations with wrong co-
ordinates. Only stations within the worldwide grid from -180° to 180° longitude and 90°
to -90° latitude were accepted. Duplicated stations with the same coordinates were re-
moved under the condition that the station with the highest coverage values remained in
the data-set. This happened because the data was not provided from one organisation
alone. After the clean up the data-set contained 19150 stations.
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Figure 3.1: Annual cycle of the two model forecasts ERA5 (red, left) and NEMS (red, right) in
relation to the annual cycle of the measurements (black) at a station in Southern France (43.83
N 0.02 W, 145 m a.s.l., Coverage: 98.45 %)



Temperature forecasts of the six models were downloaded from the meteoblue interface
(history+ advanced access) for 19150 stations. Next to the hourly measured data there
were six global temperature forecasts that allowed a global comparison.

Figure 3.1 shows that ERA5 (left) has a better overlap of the annual cycle of the mea-
surements compared to NEMS (right). For the annual distribution on two models the
function moving average “SMA” from the R-package “T'TR” was used [25] to smooth the
yearly cycle of the data.

With the given coordinates of the stations and the model grid points the difference in
height and the horizontal distance was calculated. The difference in height results from
the height of the station and the height of the individual models’ grid point, both being
surface data. It was calculated as

Ah = hmodel - hmeasurement (31)

with height h in [m]. Thus, a negative height corresponds to a model height being less
than the measurement height and vice versa.

The temperature forecasts are located at the coordinates of the intersection points of
the individual model grids. With the meteoblue interface taking the next grid point the
theoretical maximum horizontal distance is half of the diagonal of the model resolution.
The distance Ad can differ whether the corresponding station is near the grid point or at
maximum distance max Ad of:

a

maz Ad = /(a)2)2 + (a)2)2 = gﬂ - (3.2)

>

where a is the side length of the grid or spatial resolution.

The difference in degree latitude (Alat [°]) and longitude (Alon [°]) was calculated simi-
larly. The latitude or longitude value of the station was subtracted from the models. For
the calculations the earth radius 7.4, was taken as constant with 6370 km. Because of
the constant number of km per degree in latitude (kpdl) the difference is multiplied with
the factor kpdl = 111.2 km/*lat.

kpdl = 2 % 7 % Toqper, / 360 (3.3)

ALAT = kpdl * A lat (3.4)

Differing from the latitude distance ALAT [km], the longitude distance ALON [km] is
calculated with the longitude difference Alon [°] which used the cosine of the geographical
latitude lat [°]. Consequently the specific latitude circle of the earth was calculated as

ALON = cos (lat) = kpdl = A lon. (3.5)



With the two distances in north-south and east-west direction the direct distance AD
[km] is calculated with the law of Pythagoras as

AD = ALAT? + ALON? . (3.6)

The horizontal distances are absolute values. Thus, it is not possible to say whether the
station is located north, south, east or west of the grid point. The height difference and
the earth’s curvature were not regarded here. The distance Ad between the station and
the model grid point should have been limited to the half of the diagonal (Formula 3.2).
The distance was sometimes a multiple of the theoretical maximum. For verification, the
distances were also calculated with the “haversine” function in the R-package “pracma”
[2]. The “haversine” function calculates the arc distance between two points on planet
Earth. The result was almost the same.

Therefore, it should be stated, that under specific conditions another grid point has been
taken instead of the one next to it. In regions where the difference between the height of
the model grid and the measurement is large the interface picks another grid point within
3 x 3 grid points. Secondly, the interface takes into account that at coastlines a grid
point over land is always taken. Like this a pattern can be seen in Figure 3.2. It shows
the stations that have a higher horizontal distance to their corresponding grid point than
theoretically possible are mainly located at coastlines and mountainous regions.

- Stations with horizontal distance higher than theoretical maximum ‘ - Stations with horizontal distance higher than theoretical maximum ‘
T T T T T T T T T T T T T T
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150

Longitude [*) Longitude []

Figure 3.2: Stations (blue) that have a higher distance to their ERAS5 grid point (left) and their
NEMS grid point (right) than the theoretical maximum regarding the specific spatial resolution
(Appendiz B.0.3)

In Figure 3.3 the black points are the ERA5 grid points used in this survey. The missing
ERA5 grid points have no corresponding weather station inside this thesis and thus are
not contained in the data-set. The sector of the map is plotted rectangularly. However,
the distances between the points are constant. The green point is the station with the
maximum horizontal distance on ERA5 to the next model grid point. The interface of
meteoblue has picked the red point (as well ERA5 grid point) and not the nearest grid
point south. The result is a higher horizontal distance.

To analyse the dependency on representativeness three different coverage filters were ap-
plied. The coverage filters were set on 30, 60 and 90 % (C30, C60 and C90). In the data-set
with C30, only the stations with coverage values higher than 30 % were included. The
results were different numbers of stations for the following analysis:
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Figure 3.3: Station 14286 in Northern India with the biggest horizontal distance (green) and its
corresponding ERAS5 grid point (red) in the environment of the other in this data-set used ERA5
grid points (black)

All stations: 19150

30 % coverage: 12515 (C30)
60 % coverage: 8228 (C60)
90 % coverage: 6351 (C90)

Because weather stations are mostly limited to easily accessible locations and land surface
there is a mismatch in their distribution. While Europe and North America are densely
populated with both people and stations, regions like deserts and the high seas are not
covered satisfactorily [23].

3.2 Statistical Analysis

For the major analyses four errors have been computed for the hourly data. The Mean
Absolute Error (MAE), the Mean Bias Error (MBE), the Root Mean Squared Error
(RMSE) and the standard deviation (SD) all in [K] are computed as

1
MAE = H igt |(mt7i - 0t,i>| (37)
1
MBE = ﬁ th (mt,i - Ot,i) (38)
1
RMSE = |— i — 014)? 3.9
2 2 s = o) (39)

SD = \/ ! - > (AT,; — AT)? (3.10)

n — -
2,t

8



where m is the model data [°C], o the observation [°C] and n the number of corresponding
temperature pairs (model and measurement). AT is the temperature difference, the
observation temperature subtracted from the model temperature and AT the mean of
the temperature difference per station. All tables in this thesis are produced with the
help of the R-package "stargazer” [8]. The summation is done over time ¢ and then over
station 7. A negative MBE results when the observed temperature is higher than the
model temperature and vice versa.
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Figure 3.4: Height difference distribution on ERAS (left) and NEMS (right) (Figure B.2)

Figure 3.4 shows that the majority of the stations has an absolute height difference of less
than 100 m.

Additionally, an analysis of daily averages was done. It is worth mentioning that for
the daily error analysis the 24-h windows are from 00:00 to 00:00 UTC. Thus, depending
on the geographical positions of each station, the 24-h window is shifted. In other words,
a day can for example be from 11:00 AM to 11:00 AM.

The whole analysis was done with the “aggregate” function from the R-package “stats”
[24]. A comparison of the hourly mean and the daily mean was done. Additionally the
model performance predicting the maximum and minimum of a 24-h window was tested.

Note that for the comparison the maximum and minimum of the model forecast in this
24-h window was not necessarily regarded. The model temperatures at the same time
where the measurement has its maximum or minimum were taken into account. Besides
the absolute value in the window also the exact hour of predicted extrema is relevant. In
other words, the absolute maximum forecast could have been accurate but shifted about
two hours. Thus, at the specific time of the measurements extrema the forecast is less
accurate.



3.3 Downscaling Approach

Because of the height difference between model grid point and station a simple down-
scaling attempt was applied. The new temperatures were calculated with four different
lapse rates I: 1.0, 0.8, 0.65 and 0.55 K / 100 m in height to see a possible trend.
Hence, a temperature value for a specific hour and station was corrected with the lapse
rate multiplied by the difference in height. The downscaled temperature was calculated as

Tdownscaled = Tmodel + 1'% Ah (311)

with the raw model temperature 7,000 [K].

A negative difference in height lowers the predicted temperature. The station is higher
than the model and thus, the model temperature gets lowered to approach the measure-
ments height.

3.4 World Maps

World maps were plotted to display the analyses for each error and model. Within these
maps, it is easier to visualise patterns. Depending upon which errors are plotted first
(i.e. starting with large errors and finishing with the small errors, or vice versa) the world
map, with the same data, can be interpreted in different ways. If large errors are plotted
first, the map shows very good predictability. With inverted plotting order, the world
map shows poor predictability.

This is because of high station density in selected regions over the world and the ex-
tent of the points representing them; not all stations could be visualised at once. Stations
that were plotted first were over-plotted and hence not visible in the corresponding world
map. This means that error plots of predictability can be non-representative of the true
data. To avoid this, the world was gridded in model grid cells with a horizontal resolution
of 2° and 5°. All stations within one of these fields were merged first and then plotted
in the centre of the field. The outcomes were tables with 16200 and 2592 values respec-
tively. If a field does not overlap any station, there is consequently no number and thus
no coloured point. This technique applies weighting to the global errors.

This was done for the mean, median, maximum and minimum error of the fields, on
MAE, RMSE and SD, on the six models on 2° and 5° horizontal resolution maps with all
(19150) and C60 (8228) stations, resulting in 288 maps (4 x 3 x 6 x 2 x 2). For the MBE
only the mean of the six models MBE was plotted into 2° clustered maps.

Additionally, world maps were generated, where the model with the highest or small-
est MBE or the model with the smallest MAE is shown. The fields are coloured to the
corresponding model with the lowest MAE and the highest and lowest MBE compared to
the others. In other words, the cluster was coloured black if ERA5 had the lowest MAE.
The maps could show patterns where some models have the tendency for the highest MBE
or the smallest MBE or MAE.
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3.5 Climate Zones

Furthermore, the performance of the six models depending upon which climate zone each
station is located in is of interest. To classify each station, the Koeppen-Geiger climate
zones of the R-package "kge” were used [3]. These zones were considered in a coarse
5-zone set and a more specific 30-zone set.

The MAE and MBE of all 8228 stations (C60) within a specific climate zone were aver-
aged. Thus, it was possible to give a statement about the predictability in each different
climate zone.

3.6 Model Spread

After the climate zones two different model spreads were analysed. The model spread is
an index for the predictability of a forecast. It only regards the six different model tem-
perature forecasts without the actual observation. A small temperature difference results
if the models all predict approximately the same. Conversely the difference is large when
the models do not concur with each other.

For the first model spread 'max-min’, the minimum temperature forecast of the six models
was subtracted from the maximum at the same hour and station. To know the model with
the maximum and minimum temperature was not necessary. The second model spread
'standard deviation’ was analysed with the standard deviation of the six models for each
hour and station.

The two 2° gridded model spread maps were approached twice but differently. In the
end, 4 model spread maps were obtained. In the first approach both model spreads were
calculated separately for each station first and later the multiple model spreads were av-
eraged within the grid.

In the second approach the averaging within a grid was done before the two model spread
calculation. From all stations in a specific grid all temperatures of a model at a certain
time were averaged. These values were used to calculate the 'max-min’ and ’standard
deviation’. In other words, for example, three stations are within a grid. The three ERA5
temperatures for the first hour are averaged, identical with all six models. From the
resulting six values the maximum, minimum and the standard deviation were delivered.
The following is similar to the calculation for each station.
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4

Results

4.1 Analyses

4.1.1 Overview coverage

In Figure 4.1, left, the 2° gridded coverage values are shown. In Europe and North America
the temporal coverage is highest. Also Greenland, Australia, Japan, Malaysia and the
Arabian Peninsula have high coverages. Regions with low coverages are Brazil, Africa,
India, Russia and Siberia. For the white areas not one weather observation is reported in
this data set.
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Figure 4.1: Clustered station coverage coloured subdivided into the four coverage classes (left)
and coverage distribution of all stations (right)

The coverage distribution is shown in Figure 4.1, right. About a quarter of the stations
deliver more than 95 % of the hourly measurements. Interestingly, a large portion of
the stations only provide one third of these measurements. This is because the afore
mentioned stations deliver 3-hourly data. It is important to distinguish the temporal
coverage and the temporal resolution. The temporal coverage is again the percentage
of the useable data in relation to the maximum possible data quantity of 8760 hourly
observations. The temporal resolution can be hourly or 3-hourly. Like this, a 3-hourly
data-set with 100 % temporal coverage (2920 observations) automatically does not fulfil
the conditions for C60 or C90 in this survey. As a result, about 43 % of the stations
comply with C60.
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4.1.2 Raw model vs different coverage data

The reanalysis model ERA5 with a twice coarser horizontal resolution performs better
than ICON. A higher spatial resolution does not automatically mean more precision, if
not only raw model forecasts are considered (Table 4.1, left) [1]. Besides the best possible
forecast, a stable and reliable bias-removal technique is important [20]. Due to the tem-
perature correction, the reanalysis model ERA5 forecast is best under normal conditions.
ICON with its higher spatial resolution performs better than the other raw model fore-
casts and not quite as good as ERA5. ICON achieves a MAE less than 2 K with coverage
90 % (Appendix A.0.1).

Considering the raw model performances, there is a slight tendency of a smaller errors
with higher model resolution. [20]. With an increase of the spatial resolution the error
due to representativeness should decrease with the decline of the maximum horizontal
distance [19]. Interestingly, GEM gets outperformed by all models despite having the
second highest spatial resolution.

Table 4.1: Error comparison [K] with all (19150)(left) and C60 (8228)(right) stations (Appendix
A.0.1)

MAE MBE RMSE SD MAE MBE RMSE SD
ERA5 1.7 0.3 22 19 ERA5 1.5 0.2 1.9 1.8
NEMSGLOBAL 2.4 0.4 3.1 26 NEMSGLOBAL 2.2 0.1 2.8 25
GFS05 2.6 0.3 3.4 3.0 GFS05 2.3 0.2 2.9 2.7
MFGLOBAL 2.7 -0.2 3.4 3.1 MFGLOBAL 2.3 -0.1 3.0 28
GEM 2.8 -0.8 3.5 31 GEM 2.4 -0.7 3.0 27
ICON 2.3 -0.1 3.0 27 ICON 2.0 -0.1 25 24

As can be seen in Table 4.1 and additionally Appendix A.0.1 there is a relation between
the errors and the model forecast grid points lying next to stations covering only small
parts of the hourly time series. Thus, the errors get smaller if the interpreted data does
not contain the stations with small coverage values. By taking the mean, large errors
have a major effect on the forecast accuracy and alter the error range. A worse temporal
resolution downgrades the correlation. The MAE gets smaller by around 0.3 to 0.5 K
comparing C90 to all stations. The MBE decreases by around 0.1 to 0.4 K, the RMSE
by around 0.3 to 0.6 K and the SD between 0.1 and 0.4 K.

ERA5, NEMS and GFS05 tend towards warm biases, while MF, GEM and ICON have
cold biases. GEM with -0.7 K has cold biases. The lowest standard deviation was found
for ERAS5, followed by ICON, NEMS, GFS05, GEM and MF.

Regarding this, all the following computations are done with the data for C60. Thus, it
can be ensured that stations with a small coverage are removed while enough stations
are present to allow a global comparison of the data. Only for plotting the world maps
all stations were used. Thus, it can be ensured that remote regions with small coverage
values are still represented and visible in the map.

With C60, 86.3 % of the stations have an error less than 2 K with ERA5 (Table 4.2).
ICON has 61.7 %, NEMS 50.8 %, GFS05 39.6 %, GEM 36.6 % and MF 35.5 % below 2 K.
A higher percentage is within the 2 K range by neglecting stations with lower coverages
(Appendix A.0.5).
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Table 4.2: Percentages of 8228 stations (C60) per model in a specific MAE range are
shown (Appendiz A.0.5)

<lK 1-15K 15-2K 2-25K 25-3K 3K<

ERA5 19.1 46.8 20.4 7.7 2.9 3.1
NEMSGLOBAL 1.2 9.2 40.4 28.9 10.9 9.4
GFS05 2.2 11.9 25.5 31.9 13.8 14.7
MFGLOBAL 1.9 9.5 24.1 32.6 17.4 14.5
GEM 2.5 11.8 22.3 32.1 13.8 17.5
ICON 2.3 22.2 34.2 22.7 7.9 7.7

4.1.3 Hourly vs daily mean

For an additional test the hourly data set was divided in daily means with the objective
of getting an overview of the forecast accuracy on daily mean temperatures.

Table 4.3: Error comparison [K] on the daily mean fore-
cast with C60 (8228 stations)

MAE MBE RMSE SD

ERA5 1.0 0.2 1.3 1.0
NEMSGLOBAL 1.6 0.1 20 1.7
GFS05 1.4 0.2 1.8 14
MFGLOBAL 1.6 -0.1 1.9 1.6
GEM 1.6  -0.7 1.9 1.5
ICON 1.1 -0.1 1.4 1.2

Comparing the error from the hourly mean (Table 4.1 (right)) and daily mean (Table 4.3)
it shows that a daily mean temperature is simpler to predict than an hourly mean. This
is a result of the smoothing of the mean function. All daily mean forecasts are better
than the hourly forecasts, the RMSE decreases up to 1.1 K and the MAE up to 0.9 K. It
reconfirms that ICON performs quite as well as reanalysis model ERAS5.

4.1.4 Daily maximum vs daily minimum forecast

Besides daily mean, a prediction error on the daily minimum and maximum was com-
puted. In Table 4.4 it is interesting to see that ERA5, NEMS and GFS05 are better in
predicting the maximum of a daily window regarding the MAE and RMSE. Compared
with MF, GEM and ICON whose MAE and RMSE is smaller, when modelling the mini-

mum temperature.

Not taking into consideration MF and GEM, the worst performing model is NEMS when
it comes to the daily mean prediction. However, with a resolution of 30 km NEMS out-
runs [CON with a 13 km resolution and achieves the second best model in the maximum
prediction. All models get worse in predicting the daily extrema. Perhaps the models
would have had a more precise forecast if the hour of the measurement extrema had been
disregarded.
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Table 4.4: Error comparison [K| on the daily mazimum (left) and daily minimum (right) forecast
with C60 (8228 stations)

MAE MBE RMSE SD MAE MBE RMSE SD
ERA5 1.5 -0.8 19 1.5 ERA5 1.8 1.2 23 1.7
NEMSGLOBAL 2.2 -0.9 2.7 22 NEMSGLOBAL 2.4 0.9 3.1 26
GFS05 2.4 -1.5 29 22 GFS05 2.7 2.0 3.3 23
MFGLOBAL 2.7 -2.0 3.3 23 MFGLOBAL 2.6 1.8 3.3 24
GEM 2.7 -2.2 3.3 22 GEM 2.4 0.6 3.0 24
ICON 2.3 -1.8 28 1.9 ICON 2.2 1.7 2.8 20

The MBE values show that in all models the daily maximum is predicted too low and the
minimum too high. The models do not have the same amplitude as the measurements
but are mostly in the range between the minimum and maximum. In this case the models
do not exactly forecast the extreme high and low temperatures. Such tables suggest that
different models are tuned differently for their forecast. One performs better at the daily
mean the other at an extrema. ERA5 and NEMS have a good performance at both
extrema. GEM MBE for the daily minimum forecast with 0.6 K is the lowest. ERA5
for maximum forecast is still the best performing model, outrun by NEMS and GEM in
minimum forecast. Averaging the MAE, the maximum is slightly better to predict than
the minimum. Conversely over the MBE the minimum is better to forecast, primarily due
to the good performance of GEM.

4.1.5 Mean vs median error

In addition to the mean, the median of the C60 errors for each model was compared to
estimate the impact of possible outliers. The median MAE is at most 0.2 K lower than the
mean MAE. Since the differences between the mean and the median (Table 4.1 (right)
and Table 4.5) are small and the coverage is already included the mean was taken for
further analyses.

Table 4.5: Error comparison [K] on the hourly data set
using the median with C60 (8228 stations)

MAE MBE RMSE SD

ERA5 1.3 0.2 1.7 1.6
NEMSGLOBAL 2.0 0.2 26 24
GFS05 2.1 0.2 28 2.6
MFGLOBAL 22 -0.0 29 2.7
GEM 22 -0.5 29 2.7
ICON 1.9 -0.0 24 23
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4.1.6 Error distribution

The data set has a right skewed distribution. Thus, the mean is bigger than the median.
Most of the data are in a common range with some stations that have outliers, see Figure
4.2.
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Figure 4.2: Histogram of MAE distribution of ERAS (left) and NEMS (right): mean (green)
and median (red)

In Figure 4.3 the MAE and the RMSE distribution is shown. Note that the stations are
sorted according to the error size. Hence, the stations and their error do not correspond
between the two graphs nor between each line in one graph. Reanalysis model ERA5 has
the smallest error. ICON is the second best performing model followed by NEMS.

7| — ERAS © 7| — ERAS
—— NEMSGLOBAL —— NEMSGLOBAL
GFS05 GFS05
« | — WMFGLOBAL + | — wreLoBAL
GEM
— ICON

T T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000

number of stations number of stations

Figure 4.3: MAE (left) and RMSE (right) at 8228 station (C60) for five raw models and one
reanalysis model

The advantage of a higher model resolution of GEM compared to GFS05 and MF cannot
be seen. Interestingly, GEM has even more stations with a high error and fewer with
a small error compared to NEMS, GFS05, MF. The progressions are comparable to the
year before [23].

4.1.7 Raw vs gridded data

To avoid over-plotting points in the R-program as shown in Figure 4.4 the world was
gridded in model grid cells of 5° and 2° side length. All stations that overlapped were
representative for this particular field. Alternatively to the grid, the point size could have
been minimised or only particular regions could have been plotted to prevent an overlap.
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Figure 4.4: Problem of over-plotting: (left) the stations with a small MAE on ERAS plotted at
last, (right) the ones with a high MAFE last

By all the stations in one square of 5° side length or 2° respectively ending up in one value
the error in regions with a higher station density gets a higher weighting. Regarding Table
4.6, left, the mean MAE is constant and only increases on NEMS and MF. The RMSE
increase on all six models between 0.1 and 0.2 K.

The increase of 0.1 K on NEMS is seen in both Tables 4.6, the one of MF only in the 5°
gridded (left). In 2° gridded (right) the impact of the cluster is already minimised because
it is again nearer to the version without grid. On ERA5 and NEMS the MBE decreases
by clustering the world in squares of 5° side length and contrary on the other models.

Table 4.6: Error comparison [K] with C60 on the 5° clustered (left) and the 2° clustered (right)
(Appendiz A.0.3 and A.0.})

MAE MBE RMSE SD MAE MBE RMSE SD
ERA5 1.5 -0.1 20 1.8 ERA5 1.5 0.1 20 1.8
NEMSGLOBAL 2.3 -0.0 3.0 26 NEMSGLOBAL 2.3 0.0 29 26
GFS05 2.3 0.3 3.0 27 GFS05 2.4 0.3 3.0 238
MFGLOBAL 2.4 -0.4 3.2 29 MFGLOBAL 2.4 -0.3 3.2 29
GEM 2.4 -0.8 3.1 27 GEM 2.5 -0.8 3.1 28
ICON 2.0 -0.2 26 24 ICON 2.0 -0.1 26 25

4.1.8 Raw vs downscaled data

In Table 4.7 the errors after recalculating the model temperatures with a simple down-
scaling attempt are shown. The MAE remains constant or lowers at most 0.2 K, on GEM.
MBE and RMSE decline as well, the standard deviation remains the same.

By plotting all the errors in dependency of the difference in height, it was not easy to
see a simple trend. With the aggregated forecast data, the progression of the error with
the increasing difference in height can be shown on NEMS (Figure 4.5). In the global
temperature model forecast the MBE is significantly dependent on the difference in height
between the station and the model grid point. Systematic errors, like these caused by
height differences, can be removed with post-processing methods [19]. The reanalysis
model ERA5 and NEMS have the smallest decline in MAE (0.3 K) while GEM with 0.6
K has the biggest (Table 4.7). The downscale approach was done on C60.

In Figure 4.5 the raw model MBE and the downscaled MBE are shown. It is observable
that stations with a negative difference in height have warm biases and vice-versa (Figure
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Table 4.7: Error comparison [K] of 8228 stations on the
downscaled weather forecasts: lapse rate 0.65 K / 100 m
(Appendiz A.0.2)

MAE MBE RMSE SD

ERA5 1.4 0.3 1.9 18

NEMSGLOBAL 2.1 0.3 2.7 25

GFS05 2.2 0.3 29 27

MFGLOBAL 2.3 0.1 3.0 28

GEM 22  -04 29 2.7

ICON 1.9 0.0 25 24
! 7#90 R Y T S N ! 7%60 L Y O .
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Figure 4.5: MBE shift: The MBE on NEMS in relation to the difference in height before (top)
and after (bottom) downscaling the model temperatures: lapse rate 0.65 K / 100 m

4.5, left). Thereby the change in temperature per height difference, the lapse rate, is not
included. Stations that are 600 to 800 m higher than the model grid point have an MBE
of 4 K. The model grid point is lower than the station and thus the temperature forecasts
are predicted too high. Working with a lapse rate these biases can be corrected. In Figure
4.5, right, the MBE is height corrected. Like this, stations with high positive and negative
height differences have approximately the same MBE. The MBE of 4 K of the previous
stations drops to -0.5 K. However, a minority of the stations have large height differences
(Figure 3.4) and are effectively affected by this downscaling approach and thus, on all
stations, the errors only decrease little (Table 4.7).

4.1.9 MAE depending on the horizontal distance

The horizontal distance would theoretically have been limited (Formula 3.2). At least two
thirds of the stations per model fulfil these qualifications. Figure 4.6 shows the horizontal
distance distribution. While ERA5 has a spatial resolution of 30 km the theoretical
maximum would be about 22 km. The maximum distance to the next grid point was 51
km (Figure 3.3). For 16 % of all stations, the interface did not pick the next ERA5 grid
point. For NEMS the maximum distance is 77 km and a percentage of 31 %, the distance
is further than 22 km. The other models are comparable. 29 % of GFS05, 28 % of MF,
14 % of GEM and 9 % of ICON are not taking the next grid point (Figure B.1).
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Figure 4.6: Horizontal distance distribution on ERAS5 (left) and NEMS (right) including the
theoretical maximum distance, the mazimum distance in the data set, the percentage of the
stations above the theoretical mazimum, and the error depending on this benchmark (Appendiz
A.32, B.0.1)

Table A.32 shows the MAE depending on the access to the next model grid point. This is
done for C60 and all stations. If the interface does not pick the next grid point the MAE
of these stations is always about 0.2 to 0.6 K higher than of those which are lower than
the benchmark. Considering this, the error increases with bigger horizontal distances.
The absolute error declines from all stations to coverage 60. Depending on the decreases
the difference varies. ERA5 and GEM have with 0.6 K the largest span, ICON with 0.2
K the lowest.

Only the stations with horizontal distances lower than the theoretical maximum, all the
MAE decline for 0.1 K (Table 4.1, right). Interestingly, for the three models NEMS,
GFS05 and MF with about 30 % of the station not going to the next grid point, the error
between the two subsets is even smaller compared to ERA5 and GEM with lower percent-
ages. Here, ICON having the lowest percentage values above the theoretical maximum
distance and the highest spatial resolution performs best.
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4.2 World Maps

4.2.1 Mean Absolute Error (MAE)

Figure 4.7, left is the gridded version of Figure 4.4. The trend for higher errors in the
Rocky Mountains, India, China and Eastern Russia can be seen in the 2° gridded map.
Figure 4.7 shows that on ERA5 low MAE of less than 1 K are mainly found in Northern
Europe, Western Russia, Indonesia and Australia. Additionally, ERA5 performs well in
the eastern part of North America, large areas of Africa and China. Errors higher than
3 K are found in Alaska, Greenland, the Rocky Mountains, India, the Himalayas, China,
Mongolia and Eastern Russia. Comparable results delivers NEMS with a little shifted
error range.

Latitude

Longitude [*] Longitude [

Figure 4.7: World maps of the 2° gridded MAE on ERAS (left) and NEMS (right) (Appendix
B.0.4)

Looking at GFS05, MF, GEM and ICON (Appendix B.0.4), Asia, Australia, Brazil and
South Africa have increased MAE. Comparing these four models, ICON outperforms the
others. With its higher resolution, it is clearly performing better in complex terrain such
as the Rocky Mountains. Regarding this in North and South America, large differences in
performance are found in complex terrain. Compared with the other raw models, NEMS
has a better performance in Australia and the eastern coast of Asia.

Additionally to the complexity of terrain in different regions there is a trend of decreasing
predictability with increasing distance from the sea. On simpler terrain, such as Europe
and China, the predictability gradient is weaker than along North America’s west coast
which is strongly affected by the Rocky Mountains. In continental regions like Siberia
that are cut off from the sea and lie next to mountainous regions such as the Himalayas
it is hard to exactly predict the cold spells.

4.2.2 Mean Bias Error (MBE)

On ERA5 MBE the global patterns are less pronounced than on MAE. The MBE is quite
well-balanced world-wide. ERADJ has cold biases in Alaska, North Canada, Greenland,
Norway and Spitsbergen. Furthermore, an underestimation is found in the Northern
Rocky Mountains, the Central Andes, the Himalayas, China, Central America, Indonesia,
New Zealand and on islands such as Cape Verde and the Canary Islands. Regions with
warm biases are the Southern Rocky Mountains, Brazil, India, Northern China, Mongolia,
the Philippines, Southern Europe and the far eastern part of Russia.

20



Longitude [*) Longitude []

Figure 4.8: World maps of the 2° gridded MBE on ERAS (left) and NEMS (right) (B.0.5)

When looking at the same error range on NEMS the patterns are clearer. Nearly the entire
continental inland across Asia until Europe has, by trend, warm biases. In Alaska, Green-
land, Central America, Brazil, Cape Horn, Indonesia, the Himalayas and New Zealand
there is a temperature overestimation. Typically, the MBE at coastlines is globally cold
biased. Going landward, the inland MBE is getting positive values, like in Brazil, North-
ern Europe, Africa and America.

GFS05’s performance is comparable to NEMS with warm biases over the Rocky Moun-
tains, Western Africa and Asia. On MF warm biases over the Rocky Mountains are found
as well. Unlike NEMS and GFS05, MF is quite well-balanced in South America, Africa
and Asia, with a tendency to slightly underestimate the temperatures.

Apart from Northern Russia, Central Europe, Western North and South America as
well as some coastal regions GEM globally underestimates temperatures. ICON is well-
balanced world-wide. Interestingly, New Zealand shows on ERA5 and NEMS predomi-
nately cold biases and on ICON, GFS05, MF and GEM warm biases. ICON underesti-
mates the air temperatures for the Asian regions and the west coast of North and South
America. In comparison to the other raw model, the global pattern on ICON is smoother
and more clearly defined.

4.2.3 Minimum and Maximum MBE and MAE forecast

Figure 4.9 shows the best performing model for each cluster. If ERA5 is included (left) it
outperforms almost all models globally. In some regions, such as Alaska, the west coast of
North America, Greenland, Northern Europe and from the Mediterranean to the Caspian
Sea, ICON has the smallest MAE. While NEMS, MF and GEM cannot show specific
patterns here, GFS05 is dominant around Central Americas east coast, the Indian Ocean
and the Western Pacific. In Alaska, Greenland, Northern Europe, the Mediterranean Sea
and along the North American west coast as well as oceanic islands, ERA5 is overtaken
by the five raw global forecast models.

Neglecting ERAS, the performances of the five raw model forecasts are shown in Figure 4.9
(left). Comparing five raw models, the spatial resolution is partly seen. ICON, with the
highest resolution, dominates in Alaska, the Rocky Mountains, Newfoundland, Europe,
Russia, Western Central Africa and South Africa. Besides ICON, NEMS has the smallest
MAE over the United States, Central America down to Ecuador and Brazil, some parts
of Africa, Kazakhstan, Northern China, India, Indonesia and Australia. While GEM still
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Figure 4.9: Smallest MAE performance regarding all siz model (left) and without reanalysis
model ERAS5 (right) (Appendiz B.0.6)

does not show a specific pattern on a global scale, GFS05 additionally performs best in
parts of Western Russia. MF has a competitive performance in Central Asia.

In Figure 4.10 (left) the model with the highest MBE in a specific cluster is shown.
While NEMS and GFS05 dominate the warm biases (Table 4.1) the other models are
sparsely represented. ERAD has the highest MBE over North Eastern America, Central
America down to Ecuador, the coast of Brazil, the Alps, Norway, Japan and Indonesia.
NEMS has patterns over Canada, South America and Eastern Europe to far Eastern Rus-
sia. GFS05 has the warmest biases in Northern Alaska, the Eastern foreland of the Rocky
Mountains and the Andes, large areas over Africa, Southern Europe, South Western Asia,
continental Australia and on oceanic islands. In Northern America within and next to
the Rocky Mountains MF has the highest MBE.

Latitude [°]
0
L

Longitude [*) Longitude [*]

Figure 4.10: Mazimum (left) and minimum (right) MBE distribution (B.0.7)

In Figure 4.10, right, the lowest MBE is shown. The GEM pattern spreads from Northern
Alaska over North America down to Chile. Additionally, most of Southern Europe and
Asia as well as large continental areas in Africa and Australia, GEM is represented with
the lowest MBE. GEM has the largest MBE absolute value over all stations followed by
MF and ICON (Table 4.1, left). Besides for along the eastern coast of America and the
western coast of Africa, MF has cold biases in Northern Europe, Western Russia and
Indonesia. NEMS has the lowest biases at the coast of Alaska and Canada, the North Sea
and New Zealand.
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4.3 Climate Zones

Table A.33 indicates that ERAb has the best performance in all 5 climate zones regarding
the MAE followed by ICON, NEMS, GFS05, MF and GEM. Neglecting ERA5, NEMS
and ICON perform equally well in the equatorial climate (A). See the different climate
zone classifications in Figure 4.11. In the arid zones (B) NEMS is slightly better than
ICON. In the warm temperate (C), the cold (D) and the polar (E) zones, ICON performs
best. While NEMS has an equally good performance as ICON in the tropics and the arid
regions, the MAE is strongly increasing from the temperate, to the cold and the polar
climate compared to ICON. At the same time, the MAE of NEMS in the polar regions is
the highest over all models and climate zones. Besides ERA5, ICON is the only model to
perform an MAE under 2 K in the temperate zone. However, all models have their best
performance in the temperate zone.

Looking at the fine classification, the Csc and Dwd are empty because there were no
stations corresponding to these zones. The high MAE on GFS05, MF and GEM is a
result of the bad performances of these models in the polar frost zone (EF) from 4.6 to
4.7 K. The Dwb region is hard to predict. All six models get an MAE of 4 K or higher
there. The MAE of MF is the highest overall when focusing the fine climate zones (Table
A.33).

Latitude [

Longitude [*]

Figure 4.11: All 19150 stations coloured corresponding to the 5 coarse climate zones (left) and
the fine classification (30) in the Koeppen-Geiger world map [9] (right)

Looking at the MBE, over the coarse classification ICON has the smallest spread and
performs best, followed by ERA5, NEMS, GFS05, MF and GEM (Table A.34). Mostly
all models underestimate the temperatures in the equator and polar regions. GFS05 and
GEM have more problems predicting in the arid zone than the other four models. All six
models underestimate the temperatures in the polar region (E). GEM underestimates all
fine climate zones except Dfd. Thus, with that majority of cold biases no compensation
on the MBE per climate zone or globally is possible. On MF all but the arid zone have
cold biases.
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4.4 Model Spread

The two different model spread approaches delivered comparable results. Figure 4.12
shows the second model spread approach of 'max-min’ and ’standard deviation’. In North-
ern Europe and the most oceanic islands the difference between the maximum and the
minimum forecast is below 2 K (Figure 4.12, left). Additional good model spreads are
achieved in North Eastern America, Europe, Western Russia, Indonesia and coastal re-
gions globally. Bigger model spreads appear in complex terrain such as the Rocky Moun-
tains and the Himalayas and continental plains as Siberia, Australia, as well as parts of
Alaska, Canada and Greenland.

[

Latitude

Longitude [*] Longitude [*]

Figure 4.12: Second model spread approach: maz-min (left), standard deviation (right) (Ap-
pendiz B.0.8)

The standard deviation in Figure 4.12, right, is another indicator for the predictability.
Comparable patterns can be observed. Northern Europe, most oceanic islands and coastal
regions globally have a standard deviation of under 1 K. In North and South America,
Africa, Europe, Western Russia and Indonesia the standard deviation is still less than 2
K. Similar to Figure 4.12, left, the predictability decreases within complex terrain and
increasing distance from the sea and thus more continental climate.
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5

Conclusions

Table 5.1 points out that

The reanalysis model ERAS outperforms all other model temperature forecasts on
all different levels of data treatment.

By only regarding the C60 stations, the error gets smaller because at stations with
higher coverage the mean is more balanced than at stations with fewer data pairs.

A post-processed temperature forecast at coarser resolution is better than a raw
model forecast at finer resolution [19].

Regarding raw model weather forecasts the error decreases with increasing spatial
resolution [19].

A higher resolution does not automatically lead to an increasing accuracy.

The clustered data get decreased error compared to the raw data. By clustering the
data, the weighting of the errors is corrected and this allows a global comparison.
The different clusters have no significant impact on the error.

Table 5.1: MAE values for different levels of data treatment [K] between raw
model data, coverage 60, clustered in 5° and 2°, downscaled with lapse rate
0.65 K / 100 m and the daily mean

Raw C60 CL5 CL2 DSO0.65 Daily Mean

ERA5 1.7 1.5 1.5 1.5 1.4 1.0
NEMSGLOBAL 24 22 2.3 2.3 2.1 1.6
GFS05 26 2.3 2.3 24 2.2 1.4
MFGLOBAL 2.7 23 24 24 2.3 1.6
GEM 28 24 24 2.5 2.2 1.6
ICON 23 20 2.0 2.0 1.9 1.1

Furthermore, a simple downscaling attempt can improve a model forecast. The reanalysis
model ERA5 and NEMS have the smallest decline in MAE (0.3 K) while GEM with 0.6 K
has the biggest. On the daily mean forecast all the errors of a 24-h window are smoothed
and thus are significantly easier to predict.
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Looking at the MBE (Table 5.2) the error progression is comparable to the one on MAE.
On ERA5, NEMS, GFS05 and GEM the MBE is constant or decreases. Unlike the latter,
MF and ICON have an error increase looking at the clustered calculated MBE. On either
model the MBE drops from the 5° to the 2° gridded analysis.

Table 5.2: MBE comparison [K| between raw model data, coverage 60, clus-
tered in 5° and 2°, downscaled with lapse rate 0.65 K / 100 m and the daily

mean
Raw C60 CL5 CL2 DSO0.65 Daily Mean

ERA5 0.3 0.2 0.0 0.0 0.3 0.2
NEMSGLOBAL 04 0.1 0.0 0.0 0.3 0.1
GFS05 0.3 0.2 0.3 0.3 0.3 0.2
MFGLOBAL -0.2 -0.1 -04 -0.3 0.1 -0.1
GEM -0.8 -0.7 -08 -0.8 -0.4 -0.7
ICON -0.1 -0.1 -0.2 -0.1 0.0 -0.1

On the meteoblue history+ advanced access the adjacent grid point has not been taken
under specific conditions, such as mountainous and coastal regions [personal communi-
cation with Mathias Miiller, 12.07.2019]. With a longer distance between the station
and the model grid point, the error increases (Table A.32). Because weather stations are
mostly limited to easy to reach locations and land surface, there is a mismatch in their
distribution. While Europe and North America is well equipped with stations, regions
like deserts and the high seas are scarcely covered [23]. Clustering the world in grid cells
of 2° and 5° side length the error is weighted globally without considering the number of
stations.

It is possible to globally define regions with different accuracy and variability in their
temperature forecasts and even their biases.

e Temperature forecasts globally have the highest predictability on small oceanic is-
lands and along ice-free coasts.

In these regions the air temperature is strongly regulated by the sea surface temperature
[20]. On the mainland the smallest errors are found in Northern Europe from Northern
France to the coast of Scandinavia. In Midwestern United States and along the east coast
of North America, Western Russia and Indonesia the accuracy and predictability are high.
Besides for the simple terrain, the temperature is mainly dependent on the sea surface
temperature. The high accuracy and predictability over Europe and North America can
be explained by the fact that the observed weather forecast models were developed in
these regions [23].

e The predictability decreases in regions with complex topography and increasing
distance from the sea.

Mountain ranges, such as the Rocky Mountains, the Andes, the Alps and the Himalayas
are more difficult to forecast with spatial resolution limited raw model weather forecasts.
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e Continental plains, such as Siberia, Australia, Alaska, Canada and Greenland, with
few stations and a long distance to the sea are hard to predict.

In continental regions like Siberia that are cut off from the sea and can lie next to moun-
tainous regions such as the Himalayas it is hard to exactly predict the temperatures of
cold spells.

Compared to the other raw models, NEMS has a good performance in Australia and
at the eastern coast of Asia. Otherwise GFS05 has a dominance and good performance
around Central America’s east coast, the Indian Ocean and the Western Pacific. As the
model is developed by NOAA the model is possibly tuned to predict tropical thunder-
storms. GEM globally underestimates the temperature but has a high performance in
predicting the daily minimum.

Looking at the Koeppen-Geiger classification some climate zones are hard to predict
such as the Dwb region; conversely Cfb is the zone with the highest predictability (Figure
4.11, right).

e All six models have their best performance in the temperate zone and underestimate
the temperature in the polar and predominantly tropic regions.

Like in 2017, ICON performs best for a raw model, close to ERA5 [23]. In 2018, ERAS5,
NEMS and GFS05 tend for warm biases, while MF, GEM and ICON have cold biases. In
2017, MF was underestimating the temperature with cold biases [23]. GEM globally has
very cold biases regarding the last two years. The MAE in Table 4.1 (left) are comparable
with the ones from the previous year [23]. On GFS05, MF and GEM they are slightly
higher [15]. The lowest standard deviation is found for ERA5, followed by ICON, NEMS,
GFS05, GEM and MF.
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6
Outlook

To solve the problem of large systematic errors, post-processing methods like mean bias
removal or MOS are used [19]. MOS, reanalysis and mLM profit from error cancellations
of the raw model data. On a 24-h forecast mLM performs 0.8 K better than raw ‘stand-
alone’ models and 0.3 K better than MOS and the ERA5 reanalysis model [15, 16, 17].
Thus, besides the best possible forecast, it is mostly important to have a stable and re-
liable bias-removal technique to study spatial predictability patterns [20]. Multi-models
such as mLM include a comparison of different weather forecast models and thus can
better estimate and predict a forecast, depending on the present conditions [16, 17].

Verification results are always representative for the period over which the verification
was done. Considering that, the results of this thesis, technically speaking, represent the
year 2018. In the next few years a verification over several years will be possible. Thus,
increasing its representativeness. In addition to an analysis over more years, a seasonal
analysis would deliver information on whether the accuracy and variability depends on
the season. Besides the temporal, local factors could be considered: distance to the sea
(coastal regions), complex terrain (mountain ranges), large areas (continents) and small
areas (only one country). Therefore, addressing how the different models would perform
depending on the geographical region. For the local analyses other models could be con-
sidered. Next to the other model types, such as MOS and mLM, regional models could be
compared, including different forecasting horizons. Temperature is only one parameter in
atmospheric processes. A similar evaluations could be done for precipitation, dew point,
wind speed and solar radiation.
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Appendix A
Tables

A.0.1 Error comparison with different coverages

Table A.1: All stations Table A.2: Coverage 30
K] MAE MBE RMSE SD K] MAE MBE RMSE SD
ERA5 1.7 0.3 22 1.9 ERA5 1.5 0.2 20 1.8
NEMSGLOBAL 2.4 0.4 3.1 26 NEMSGLOBAL 2.3 0.2 2.9 26
GFS05 2.6 0.3 3.4 3.0 GFS05 2.4 0.3 31 28
MFGLOBAL 2.7 -0.2 34 3.1 MFGLOBAL 24 -01 3.2 29
GEM 28  -0.8 35 3.1 GEM 25  -0.7 3.2 29
ICON 23 -0.1 3.0 2.7 ICON 21 -0.1 2.7 25

Table A.3: Coverage 60 Table A.4: Coverage 90
K] MAE MBE RMSE SD K] MAE MBE RMSE SD
ERA5 1.5 0.2 1.9 1.8 ERA5 1.4 0.2 1.9 1.7
NEMSGLOBAL 2.2 0.1 28 25 NEMSGLOBAL 2.1 0.0 28 25
GFS05 2.3 0.2 2.9 27 GFS05 2.2 0.2 2.8 26
MFGLOBAL 23 -0.1 3.0 2.8 MFGLOBAL 23 -0.1 3.0 2.7
GEM 24 -07 3.0 27 GEM 23 -0.7 3.0 2.7
ICON 2.0  -0.1 25 24 ICON 1.9  -0.1 24 23

A.0.2 Error comparison with different downscale lapse rates

Table A.5: Lapse rate: 0.80 K / 100 m Table A.6: Lapse rate: 0.65 K / 100 m
K] MAE MBE RMSE SD K] MAE MBE RMSE SD
ERAS5 14 04 19 1.8 ERA5 14 03 19 1.8
NEMSGLOBAL 2.1 0.3 2.7 25 NEMSGLOBAL 2.1 0.3 27 25
GFS05 2.2 0.3 29 27 GFS05 2.2 0.3 29 27
MFGLOBAL 23 0.1 3.0 2.8 MFGLOBAL 23 0.1 3.0 2.8
GEM 2.2 -0.4 29 27 GEM 2.2 -0.4 29 27
ICON 1.9 00 25 2.4 ICON 19 00 25 2.4

Table A.7: Lapse rate: 0.55 K / 100 m

K] MAE MBE RMSE SD
ERA5 1.4 0.3 1.9 18
NEMSGLOBAL 2.1 0.2 2.7 25
GFS05 2.2 0.3 29 27
MFGLOBAL 2.3 0.0 3.0 28
GEM 2.2 -0.5 29 27
ICON 1.9 0.0 25 24

32



A.0.3 Error comparison on the 5° clustered world

Table A.8: 5° clustered Mean

(K] MAE MBE RMSE SD
ERA5 1.5  -0.1 20 1.8
NEMSGLOBAL 23  -0.0 3.0 26
GFS05 2.3 0.3 3.0 2.7
MFGLOBAL 24 -04 3.2 29
GEM 24 -0.8 3.1 2.7
ICON 20  -0.2 26 24
Table A.10: 5° clustered Maximum
K] MAE MBE RMSE SD
ERA5 2.2 0.7 28 24
NEMSGLOBAL 3.0 0.9 3.8 3.2
GFS05 3.0 1.2 3.8 3.3
MFGLOBAL 3.1 0.5 39 35
GEM 3.2 0.1 40 3.3
ICON 2.6 0.5 33 3.0

Table A.9: 5° clustered Median

(K] MAE MBE RMSE SD
ERA5 15 -0.1 19 17
NEMSGLOBAL 23 -0.0 29 2.6
GFS05 2.3 0.3 29 26
MFGLOBAL 23 -04 31 28
GEM 24 -0.8 3.0 2.6
ICON 19  -02 25 24

Table A.11: 5° clustered Minimum

K] MAE MBE RMSE SD
ERAS5 1.2 -0.8 1.6 1.5
NEMSGLOBAL 2.0 -0.9 2.6 23
GFS05 1.9 -0.6 25 23
MFGLOBAL 2.0 -1.3 2.7 25
GEM 1.9 -1.7 25 23
ICON 1.7 -0.8 2.2 20

A.0.4 Error comparison on the

Table A.12: 2° clustered Mean

(K] MAE MBE RMSE SD
ERA5 15 0.1 20 1.8
NEMSGLOBAL 2.3 0.0 29 26
GFS05 2.4 0.3 3.0 28
MFGLOBAL 24 -03 3.2 29
GEM 25  -0.8 31 28
ICON 20 -0.1 26 2.5
Table A.14: 2° clustered Mazimum
K] MAE MBE RMSE SD
ERA5 1.8 0.5 24 21
NEMSGLOBAL 2.6 0.6 3.3 29
GFS05 2.7 0.8 3.5 3.1
MFGLOBAL 2.7 0.2 3.6 3.2
GEM 28  -0.3 3.6 3.1
ICON 2.3 0.3 3.0 28

2° clustered world

Table A.13: 2° clustered Median

K] MAE MBE RMSE SD
ERAS5 1.5 0.0 20 1.8
NEMSGLOBAL 2.2 0.0 29 26
GFS05 2.3 0.3 3.0 27
MFGLOBAL 2.4 -0.3 3.1 29
GEM 2.4 -0.8 3.1 28
ICON 2.0 -0.1 26 24

Table A.15: 2° clustered Minimum

K] MAE MBE RMSE SD
ERA5 13 -04 17 16
NEMSGLOBAL 21 -05 2.7 24
GFS05 21 -0.2 2.7 25
MFGLOBAL 22 0.7 2.9 27
GEM 22 -13 28 25
ICON 18 05 2.3 2.2
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A.0.5 Percentage Tab: MAE

Table A.16: Percentage Tab: MAE all stations

<lK 1-15K 15-2K 2-25K 25-3K 3K«

ERA5 17.5 424 22.2 9.0 3.7 5.1
NEMSGLOBAL 1.5 8.7 34.3 28.0 13.1 14.2
GFS05 2.2 8.4 21.5 27.2 16.2 24.3
MFGLOBAL 2.0 7.3 21.5 27.6 17.4 24.0
GEM 2.2 8.2 19.5 26.2 14.9 28.8
ICON 3.8 18.1 27.7 22.3 11.0 16.9

Table A.17: Percentage Tab: MAE Coverage 30

<l1K 1-15K 15-2K 2-25K 25-3K 3K<

ERA5S 18.5 45.1 21.2 8.2 3.3 3.5
NEMSGLOBAL 0.9 7.9 36.9 294 12.4 12.3
GFS05 1.7 9.9 24.3 29.9 15.2 18.8
MFGLOBAL 1.5 7.8 23.7 30.4 18.1 18.3
GEM 1.9 9.8 22.1 294 14.7 22.0
ICON 4.0 20.6 31.6 23.2 9.6 10.7

Table A.18: Percentage Tab: MAE Coverage 60

<lK 1-15K 15-2K 2-25K 25-3K 3K<

ERA5 19.1 46.8 204 7.7 2.9 3.1
NEMSGLOBAL 1.2 9.2 40.4 28.9 10.9 9.4
GFS05 2.2 11.9 25.5 31.9 13.8 14.7
MFGLOBAL 1.9 9.5 24.1 32.6 17.4 14.5
GEM 2.5 11.8 22.3 32.1 13.8 17.5
ICON 5.3 22.2 34.2 22.7 7.9 7.7

Table A.19: Percentage Tab: MAE Coverage 90

<l1K 1-15K 15-2K 2-25K 25-3K 3K<

ERA5 20.1 47.5 19.6 7.2 2.5 2.9
NEMSGLOBAL 1.0 9.5 41.2 28.7 10.5 8.9
GFS05 2.0 13.0 27.2 33.0 12.8 11.9
MFGLOBAL 1.6 10.5 25.6 33.7 17.0 11.4
GEM 2.2 12.6 23.0 33.7 13.2 15.1
ICON 5.7 23.8 35.6 22.3 7.3 5.1
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A.0.6 Percentage Tab: MBE

Table A.20: Percentage Tab: MBE all stations

<2K -2to-1K -1to0K 0-1K 1-2K 2K
ERA5 3.0 5.2 29.3 47.9 11.0 3.7
NEMSGLOBAL 5.2 9.2 24.9 32.5 18.9 9.3
GFS05 5.3 10.2 26.0 33.4 16.1 9.1
MFGLOBAL 8.6 14.0 33.0 30.7 9.4 4.4
GEM 18.1 19.4 34.7 23.0 3.2 1.6
ICON 5.3 12.4 36.7 36.3 6.9 2.4
Table A.21: Percentage Tab: MBE Coverage 30
<2K -2to-1K -1to0K 0-1K 1-2K 2K<
ERA5 2.4 4.8 29.8 50.4 10.0 2.5
NEMSGLOBAL 4.6 9.5 26.5 34.6 18.6 6.0
GFS05 3.4 8.9 27.9 36.9 15.5 7.3
MFGLOBAL 6.2 12.5 35.0 33.9 9.1 3.2
GEM 15.2 18.8 36.6 25.6 2.7 1.1
ICON 2.8 10.6 39.5 40.0 5.8 1.4
Table A.22: Percentage Tab: MBE Coverage 60
<2K 2to-1K -1to0K 0-1K 1-2K 2K<
ERA5 2.0 4.5 29.6 51.6 10.2 2.2
NEMSGLOBAL 4.5 10.2 29.7 35.9 15.7 4.0
GFS05 3.0 8.9 30.0 37.9 14.7 5.7
MFGLOBAL 5.0 11.3 35.6 35.8 9.2 3.1
GEM 12.7 18.2 40.0 26.1 2.0 1.0
ICON 2.0 8.6 41.4 41.9 5.0 1.1
Table A.23: Percentage Tab: MBE Coverage 90
<2K -2to-1K -1to0K 0-1K 1-2K 2K<
ERA5 1.8 4.4 30.5 51.9 9.5 1.9
NEMSGLOBAL 4.7 10.4 31.3 36.0 14.4 3.2
GFS05 2.9 9.0 31.4 38.0 13.3 5.4
MFGLOBAL 4.9 11.0 36.8 35.8 8.7 2.7
GEM 12.9 18.5 40.8 25.2 1.8 0.7
ICON 1.8 8.5 43.0 41.5 4.3 0.9
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A.0.7 Percentage Tab: RMSE

Table A.2): Percentage Tab: RMSE all stations

<lK 1-15K 15-2K 2-25K 25-3K 3K«

ERA5 3.2 25.1 32.5 18.8 9.0 11.2
NEMSGLOBAL 0.5 1.9 9.8 27.5 24.5 35.7
GFS05 1.2 2.1 8.3 15.7 224 50.2
MFGLOBAL 1.0 1.5 6.9 15.0 22.9 52.95
GEM 0.9 2.4 7.8 14.5 20.6 53.8
ICON 1.2 5.9 15.8 20.3 21.6 35
Table A.25: Percentage Tab: RMSE Coverage 30
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 2.7 27.5 33.9 17.9 8.6 9.3
NEMSGLOBAL 0.2 1.3 9.1 29.4 25.9 33.9
GFS05 0.6 2.4 9.6 17.6 25.3 44.3
MFGLOBAL 0.5 1.5 7.8 16.4 25 48.7
GEM 0.6 2.5 9.4 16.6 23.2 47.6
ICON 1.0 6.8 18.3 22.9 23.6 27.4
Table A.26: Percentage Tab: RMSE Coverage 60
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 3.4 28.3 34.8 17.1 8.0 8.3
NEMSGLOBAL 0.2 1.6 10.3 32.3 26.6 28.8
GFS05 0.8 3.3 11.1 18.0 28.5 38.2
MFGLOBAL 0.5 2.1 9.5 16.6 26.9 44.2
GEM 0.7 3.2 11.1 16.4 26.0 42.5
ICON 1.2 9.0 18.9 24.8 24.3 21.6
Table A.27: Percentage Tab: RMSE Coverage 90
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 3.4 30.1 34.5 16.6 7.5 7.8
NEMSGLOBAL 0.2 1.5 10.7 33.1 26.3 28.0
GFS05 0.6 3.5 12.2 19 30.5 34.1
MFGLOBAL 0.4 2.0 10.6 17.5 27.9 41.4
GEM 0.6 3.4 11.9 17.1 27.1 39.9
ICON 1.1 9.9 19.9 26.1 24.5 18.3

36



A.0.8 Percentage Tab: SD

Table A.28: Percentage Tab: SD all stations

<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 4.7 32.2 33.7 15.8 7.0 6.3
NEMSGLOBAL 1.1 2.7 16.1 34.4 23.4 22.2
GFS05 1.5 3.0 11.6 20.0 25.5 38.2
MFGLOBAL 1.1 2.1 9.7 19.6 25.3 41.9
GEM 1.1 3.2 10.7 19.1 24.3 41.4
ICON 1.8 7.4 18.7 22.9 20.9 28.1
Table A.29: Percentage Tab: SD Coverage 30
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 3.8 35.1 33.8 15.1 6.8 5.2
NEMSGLOBAL 0.5 2.0 14.5 35.8 24.4 22.6
GFS05 1.0 3.2 12.6 22.1 27.6 33.5
MFGLOBAL 0.5 2.1 10.4 20.7 26.9 39.2
GEM 0.8 3.3 12.8 21.1 26.3 35.5
ICON 1.3 8.7 20.9 25.0 22.0 22.0
Table A.30: Percentage Tab: SD Coverage 60
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 4.6 36.5 33.9 13.8 6.5 4.6
NEMSGLOBAL 0.6 2.3 15.4 38.5 24.2 18.8
GFS05 1.2 4.2 13.7 22.5 29.8 28.3
MFGLOBAL 0.6 2.7 12.1 21.1 28.1 35.4
GEM 1.0 4.2 14.6 20.3 28.4 31.3
ICON 1.6 11.2 20.8 26.8 22.1 17.3
Table A.31: Percentage Tab: SD Coverage 90
<lK 1-15K 15-2K 2-25K 25-3K 3K«
ERA5 4.6 38.7 32.7 13.3 6.1 4.5
NEMSGLOBAL 0.4 2.3 15.9 38.8 23.6 18.9
GFS05 1.0 4.5 14.9 24.0 31.1 24.3
MFGLOBAL 0.4 2.8 13.3 22.0 28.3 33.1
GEM 0.8 4.5 15.4 21.3 29.5 28.4
ICON 1.4 12.3 21.9 28.2 22.0 14.1
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A.0.9 MAE in relation to maximum horizontal distance

Table A.32: MAE [K] of the siz global models with C60 (left) and all

stations (right) in relation to the mazimum horizontal distance (3.2)

Coverage 60  all stations

ERAS5 distance higher 2.0 2.1
ERAS5 distance lower 1.4 1.6
Difference 0.6 0.5
NEMSGLOBAL distance higher 2.4 2.6
NEMSGLOBAL distance lower 2.1 2.3
Difference 0.3 0.3
GFS05 distance higher 2.5 2.9
GFS05 distance lower 2.2 2.5
Difference 0.3 0.4
MFGLOBAL distance higher 2.6 2.9
MFGLOBAL distance lower 2.2 2.6
Difference 0.4 0.3
GEM distance higher 2.9 3.2
GEM distance lower 2.3 2.7
Difference 0.6 0.5
ICON distance higher 2.1 2.6
ICON distance lower 1.9 2.3
Difference 0.2 0.3
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A.0.10 Climate zones

Table A.33: MAFE [K] of the siz global models depending on the coarse (A-E) and
fine (Af-ET) climate zone classification after Koeppen-Geiger

ERA5 NEMSGLOBAL GFS05 MFGLOBAL GEM ICON

A 1.5 2.1 2.4 2.4 2.3 2.1
B 1.6 2.3 2.8 2.7 3.2 2.4
C 1.4 2.0 2.2 2.2 2.2 1.8
D 1.5 2.3 2.3 2.4 2.4 2.0
E 2.3 3.4 2.7 3.1 3.2 2.5
Af 1.3 1.9 2.0 2.1 2.0 1.7
Am 1.3 1.8 1.9 2.1 1.9 1.7
As 1.6 2.1 2.7 2.4 2.4 2.0
Aw 1.6 2.2 2.6 2.6 2.5 2.3
BSh 1.4 2.2 3.1 2.9 3.2 2.7
BSk 1.8 2.4 2.9 2.8 3.1 2.5
BWh 1.4 2.3 2.6 2.5 3.2 2.2
BWk 1.6 2.4 2.7 2.4 3.6 2.2
Cfa 1.3 1.9 2.3 2.4 2.3 2.0
Ctb 1.2 1.9 1.9 1.9 1.9 1.5
Cfc 1.6 2.1 1.8 1.9 1.8 1.3
Csa 1.7 2.2 2.3 2.3 2.5 1.8
Csb 1.8 2.4 2.7 2.6 2.7 2.1
Csc

Cwa 1.9 2.6 2.9 2.7 2.9 2.5
Cwb 2.5 3.7 3.1 3.4 3.6 2.8
Cwec 1.3 1.8 1.9 2.0 3.9 1.7
Dfa 1.2 1.9 2.1 2.2 2.4 1.9
Dfb 1.4 2.2 2.2 2.3 2.2 1.9
Dfc 1.8 2.7 2.5 2.6 2.5 2.1
Dfd 14 3.4 3.4 3.4 3.2 3.1
Dsa 1.7 2.5 2.7 2.2 2.7 2.0
Dsb 2.4 2.7 2.4 2.6 3.9 2.2
Dsc 2.3 3.6 3.5 3.8 3.5 2.6
Dwa 1.4 2.3 3.0 2.9 3.5 2.8
Dwb 4.0 4.3 5.0 5.4 4.9 4.7
Dwec 2.0 3.1 3.4 3.0 3.2 2.5
Dwd

EF 3.5 4.7 3.7 4.7 4.6 3.0
ET 2.2 3.3 2.7 3.0 3.2 2.5
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Table A.34: MBE [K] of the siz global models depending on the coarse (A-E) and
fine (Af-ET) climate zone classification after Koeppen-Geiger

ERA5 NEMSGLOBAL GFS05 MFGLOBAL GEM ICON
A 0.0 0.0 -0.1 -0.6  -0.7 -0.3
B 0.4 0.4 1.2 0.5 -1.5 -0.2
C 0.3 0.1 0.2 -0.1 -0.6 -0.1
D 0.1 0.2 0.0 -0.1 -0.6 0.0
E -0.7 -0.9 -04 -14 -1.7 -0.2
Af -0.2 -0.7 -0.4 -1.1 -0.9 -0.4
Am -0.1 -0.4 -0.2 -1.1 -0.7 -0.5
As -0.1 -0.5 -0.5 04  -0.6 -0.3
Aw 0.2 0.3 0.1 -0.3  -0.6 -0.2
BSh 0.3 0.8 1.3 0.2 -1.3 -0.3
BSk 0.6 0.6 1.3 0.9 -1.2 0.0
BWh 0.0 -0.1 1.0 -0.1 -2.0 -0.5
BWk 0.4 0.3 1.2 0.3 -2.5 -0.7
Cfa 0.4 0.1 0.0 -0.3  -0.5 -0.2
Ctb 0.2 0.1 0.0 0.0 -0.4 0.1
Cfc -0.5 -1.2 -0.5 -0.6  -0.7 -0.1
Csa 0.3 -0.1 0.6 0.0 -1.3 -0.1
Csb 0.4 0.2 0.9 0.5 -1.0 0.0
Csc
Cwa 0.4 0.7 1.0 0.1 -1.1 -0.2
Cwb 1.4 2.2 0.9 1.4 -0.2 0.3
Cwe 0.3 0.6 -0.5 -0.2 -3.6 0.1
Dfa 0.3 0.1 -0.2 0.1 -0.7 0.0
Dfb 0.1 0.3 0.0 0.1 -0.4 0.0
Dfec -0.1 0.1 0.3 -0.2 -0.6 0.1
Dfd 0.2 2.3 0.5 -0.1 0.3 0.2
Dsa 0.4 0.9 1.8 0.4 -1.5 -0.2
Dsb 0.0 -0.4 0.3 -0.1 -2.6 0.0
Dsc -0.6 -1.0 -0.3 -1.8 -1.8 0.0
Dwa 0.2 0.3 0.8 -0.8 -2.0 -1.0
Dwb -1.2 -0.3 -1.3 -1.8 -1.7 -1.0
Dwec -0.7 0.3 0.6 0.6  -19 -0.1
Dwd
EF -14 -1.3 -0.1 -2.4 -2.2 0.0
ET -0.6 -0.8 -0.4 -1.4 -1.6 -0.3
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Appendix B

Figures
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Figure B.1: Horizontal distance distribution of ERAS (top left), NEMS (top right), GFS05 (mid
left), MF (mid right), GEM (bottom left) and ICON (bottom right) including the theoretical
mazximum distance, the mazimum distance in the data set, the percentage of the stations above
the theoretical mazimum, and the MAE depending on the benchmark (Table A.32)
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B.0.2 Height difference distribution
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Figure B.2: Height difference distribution of ERAS (top left), NEMS (top right), GFS05 (mid
left), MF (mid right), GEM (bottom left) and ICON (bottom right)
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B.0.3 World maps: stations with higher horizontal distance than
theoretical maximum
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Figure B.3: Stations with higher distance than theoretical height of ERAS (top), NEMS (middle)
and GFS05 (bottom)

43



50
|

o
T O
2
T
-
o
3 4
1
T T T T T T T
-150 -100 -50 0 50 100 150
Longitude [°]
o |
rel
@
S o o
2
T
-
o
3 4
|
« Stations with horizontal distance higher than theoretical maximum ‘
T T T T T T T
-150 -100 -50 0 50 100 150
Longitude [°]
o _|
rel
@
S o o
2
T
-
o
3 4
1
« Stations with horizontal distance higher than theoretical maximum ‘

T T T T T T T
-150 -100 -50 0 50 100 150

Longitude [°]

Figure B.J: Stations with higher distance than theoretical height of MF (top), GEM (middle)
and ICON (bottom)
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B.0.4 World maps: 2° gridded MAE

50
1

Latitude []
0
1

I . S b
<05K ] >
R - o05-10kK . &
i 10-15K . = > .
15-2.0K P
20-25K e 5 -
.+ 25-30K E e . .
£ 30< K = s s : . :
T T T T T T
-150 -100 -50 0 50 100 150
Longitude [°]
o |
n
g o4
2
T
—
(=]
2
o |
n
)
R
®
—
o
2

Longitude [°]

Figure B.5: 2° clustered MAE world maps of ERAS (top), NEMS (middle) and GFS05 (bottom)
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Figure B.6: 2° clustered MAE world maps of MF (top), GEM (middle) and ICON (bottom)
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B.0.5 World maps: 2° gridded MBE
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Figure B.7: 2° clustered MBE world maps on ERAS (top), NEMS (middle) and GFS05 (bottom,)
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Figure B.8: 2° clustered MBE world maps on on MF (top), GEM (middle) and ICON (bottom)
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B.0.6 World maps: 2° gridded Minimum MAE forecast
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Figure B.9: Minimum MAE distribution on all siz global models (top) and minimum without
ERAS5 (bottom)
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B.0.7 World maps: 2° gridded Minimum and Maximum MBE
forecast
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Figure B.10: Mazimum (top) and minimum (bottom) MBE distribution on all siz global models
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B.0.8 World maps: 2° gridded Model spread

o _
o
2 o 4
2
o
-
o
n
|
< 2K
T T T T T T T
-150 -100 -50 0 50 100 150
Longitude [°]
o |
Te)
o
T O -
2
S
—
o
e

Longitude [°]

Figure B.11: Both second model spread approaches: maz-min (top), standard deviation (bottom)
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